Langsung ke konten utama

Postingan

Menampilkan postingan dari Januari, 2021

Applying Corrective AI to Daily Seasonal Forex Trading

  By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal     ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012)   observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa

The Amazing Efficacy of Cluster-based Feature Selection

One major impediment to widespread adoption of machine learning (ML) in investment management is their black-box nature: how would you explain to an investor why the machine makes a certain prediction? What's the intuition behind a certain ML trading strategy? How would you explain a major drawdown? This lack of "interpretability" is not just a problem for financial ML, it is a prevalent issue in applying ML to any domain. If you don’t understand the underlying mechanisms of a predictive model, you may not trust its predictions. Feature importance ranking goes a long way towards providing better interpretability to ML models. The feature importance score indicates how much information a feature contributes when building a supervised learning model. The importance score is calculated for each feature in the dataset, allowing the features to be ranked. The investor can therefore see the most important predictors (features) used in the predictions, and in fact apply "fe