Langsung ke konten utama

Applying Corrective AI to Daily Seasonal Forex Trading

  By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal     ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012)   observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa

Short Interest as a Factor

Readers of zerohedge.com will no doubt be impressed by this chart and the accompanying article:






Cumulative Returns of Most Shorted Stocks in 2013



Indeed, short interest (expressed as the number of shares shorted divided by the total number of shares outstanding) has long been thought to be a useful factor. To me, the counter-intuitive wisdom is that the more a stock is shorted, the better is its performance. You might explain that by saying this is a result of the "short squeeze", when there is jump in price perhaps due to news and stock lenders are eager to sell the stock they own. If you have borrowed this stock to short, your borrowed stock may be recalled and you will be forced to buy cover at this most inopportune time. But this is an unsatisfactory explanation, as this will result only in a short term (upward) momentum in price, not the sustained out-performance of the most shorted stocks. This long-term out-performance seems to suggest that short sellers are less informed than the average trader, which is odd.



Whatever the explanation, I am intrigued to find out if short interest really is a good factor to incorporate into a comprehensive factor model over the long term.



The result? Not particularly impressive. It turns out that 2013 was one of the best years for this factor (hence the impressive chart above). For that year, a daily-rebalanced long-short portfolio (long 50 most shorted stocks and short 50 least shorted stocks in the SPX) returned 6.9%, with a Sharpe ratio of 2 and a Calmar ratio of 2.9. However, if we extend our backtest to 2007, the APR is only 2.8%, with a Sharpe ratio of 0.5 and a Calmar ratio of 0.3. This backtest was done using survivorship-bias-free data from CRSP, with short interest data provided by Compustat.



Here is the cumulative returns chart from 2007-2013:






Cumulative Returns of LS Portfolio based on Short Interest: 2007-2013





Interesting, trying this on the SP600 small-cap universe yielded negative returns, possibly meaning that short-sellers of small caps do have superior information.



I promise, this will be the last time I talk about factors in a while!



===

Tech Update:



I was shocked to learn that Matlab now offers licenses for just $149 - the so-called Matlab Home  (h/t: Ken H.) In addition, its Trading Toolbox now offers API connection to Interactive Brokers, in addition to a few other brokerages. I am familiar with both Matlab and R, and while I am impressed by the large number of free, sophisticated statistical packages in R, I still stand by Matlab as the most productive platform for developing our own strategies. The Matlab development (debugging) environment is just that much more polished and easy-to-use. The difference is bigger than Microsoft Word vs. Google Docs.


A reader Ravi B. told me that there is a website called www.seasonalgo.com if you want to try out different seasonal futures strategies.


Finally, a startup at inovancetech.com offers machine learning algorithms to help you find the best combination of technical indicators for trading FX.


===

Workshops Update:



I am now offering the Millisecond Frequency Trading (MFT) Workshop as an online course on June 26- 27. Previously, I have only offered it live in London and to a few institutional investors. It has two main parts:



Part 1: introducing techniques for traders who want to avoid HFT predators.



Part 2: how to backtest a strategy that requires tick data with millisecond resolution using Matlab.



The example strategy used is based on order flow. For more details, please visit epchan.com/my-workshops.



Additionally, I will be teaching the Mean Reversion and Momentum (but not MFT) workshops in Hong Kong on June 17-20.


Komentar

Postingan populer dari blog ini

Applying Corrective AI to Daily Seasonal Forex Trading

  By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal     ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012)   observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa

Conditional Portfolio Optimization: Using machine learning to adapt capital allocations to market regimes

By Ernest Chan, Ph.D., Haoyu Fan, Ph.D., Sudarshan Sawal, and Quentin Viville, Ph.D. Previously on this blog, we wrote about a machine-learning-based parameter optimization technique we invented, called Conditional Parameter Optimization (CPO). It appeared to work well on optimizing the operating parameters of trading strategies, but increasingly, we found that its greatest power lies in its potential to optimize portfolio allocations . We call this Conditional Portfolio Optimization (which fortuitously shares the same acronym). Let’s recap what Conditional Parameter Optimization is. Traditionally, optimizing the parameters of any business process (such as a trading strategy) is a matter of finding out what parameters give an optimal outcome over past data. For example, setting a stop loss of 1% gave the best Sharpe ratio for a trading strategy backtested over the last 10 years. Or running the conveyor belt at 1m per minute led to the lowest defect rate in a manufacturing process. O

800+ New Crypto Features

 By Quentin Viville, Sudarshan Sawal, and Ernest Chan PredictNow.ai is excited to announce that we’re expanding our feature zoo to cover crypto features! This follows our work on US stock features, and features based on options activities, ETFs, futures, and macroeconomic indicators. To read more on our previous work, click here . These new crypto features can be used as input to our machine-learning API to help improve your trading strategy. In this blog we have outlined the new crypto features as well as demonstrated  how we have used them for short term alpha generation and crypto portfolio optimization. Our new crypto features are designed to capture market activity  from subtle movements to large overarching trends. These features will quantify the variations of the price, the return, the order flow, the volatility and the correlations that appear among them. To create these features, we first constructed the Base Features  using raw market data that includes microstructure inform