Langsung ke konten utama

Applying Corrective AI to Daily Seasonal Forex Trading

  By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal     ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012)   observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa

Fundamental factors revisited, with a technology update

Contrary to my tradition of alerting readers to new and fancypants factors for predicting stock returns (while not necessarily endorsing any of them),  I report that Lyle and Wang have recently published new research demonstrating the power of two very familiar factors: book-to-market ratio (BM) and return-on-equity (ROE).



The model is simple: at the end of each calendar quarter, compute the log of BM and ROE for every stock based on the most recent earnings announcement, and regress the next-quarter return against these two factors. One subtlety of this regression is that the factor loadings (log BM and ROE) and the future returns for stocks within an industry group are pooled together.  This makes for a cross-sectional factor model, since the factor loadings (log BM and ROE) vary by stock but the factor returns (the regression coefficients) are the same for all stocks within an industry group. (A clear elucidation of cross-sectional vs time-series factor models can be found in Section 17.5 of Ruppert.) If we long stocks within the top decile of expected returns and short the bottom decile and hold for a quarter, the expected annualized average returns of this model is an eye-popping 26% or so.



I have tried to replicate these results, but unfortunately I couldn't. (My program generated a measly, though positive, APR.) The data requirement and the program are both quite demanding. I am unable to obtain the 60 quarters of fundamental data that the authors recommended - I merely have 40. I used the 65 industry groups defined by the GIC industry classifications, while the authors used the 48 Fama-French industry groups. Finally, I am unsure how to deal with stocks which have negative book values or earnings, so I omit those quarterly data. If any of our readers are able to replicate these results, please do let us know.



The authors and I used Compustat database for the fundamental data. If you do not have subscription to this database, you can consider a new, free, website called Thinknum.com. This website makes available all data extracted from companies' SEC filings starting in 2009 (2011 for small caps). There is also a neat integration with R described here.



*** Update ***



I forgot to point out one essential difference between the method in the cited paper and my own effort: the paper used the entire stock universe except for stocks cheaper than $1, while I did my research only on SP500 stocks (Hat tip to Prof. Lyle who clarified this). This turns out to be of major importance:  a to-be-published paper by our reader I. Kaplan reached the conclusion that "Linear models based on value factors do not predict future returns for the S&P 500 universe for the past fifteen years (from 1998 to 2013)."





===



Speaking of new trading technology platforms that provide historical data for backtesting (other than Thinknum.com and the previously mentioned Quantopian.com), here is another interesting one: QuantGo.com. It provides institutional intraday historical data through its data partners from 1 minute bars to full depth of book in your own private cloud running on Amazon EC2 account for a low monthly rate. They give unlimited access to years of historical data for a monthly data access fee, for examples US equities Trades and Quotes (TAQ) for an unlimited number of years are $250 per month of account rental, OPRA TAQ $250 permonth and tagged news is $200. Subscribers control and manage their own computer instances, so can install and use whatever software they want on them to backtest or trade using the data. The only hitch is that you are not allowed to download the vendor data to your own computer, it has to stay in the private cloud.



===



Follow @chanep to receive my occasional tweets on interesting quant trading industry news and articles.



===



My online Mean Reversion Strategies Workshop will be offered on April 1-3. Please visit epchan.com/my-workshops for registration details. Furthermore, I will be teaching my Mean Reversion, Momentum, and Millisecond Frequency Trading workshops in London on March 17-21, and in Hong Kong on June 17-20.




Komentar

Postingan populer dari blog ini

Applying Corrective AI to Daily Seasonal Forex Trading

  By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal     ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012)   observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa

Conditional Portfolio Optimization: Using machine learning to adapt capital allocations to market regimes

By Ernest Chan, Ph.D., Haoyu Fan, Ph.D., Sudarshan Sawal, and Quentin Viville, Ph.D. Previously on this blog, we wrote about a machine-learning-based parameter optimization technique we invented, called Conditional Parameter Optimization (CPO). It appeared to work well on optimizing the operating parameters of trading strategies, but increasingly, we found that its greatest power lies in its potential to optimize portfolio allocations . We call this Conditional Portfolio Optimization (which fortuitously shares the same acronym). Let’s recap what Conditional Parameter Optimization is. Traditionally, optimizing the parameters of any business process (such as a trading strategy) is a matter of finding out what parameters give an optimal outcome over past data. For example, setting a stop loss of 1% gave the best Sharpe ratio for a trading strategy backtested over the last 10 years. Or running the conveyor belt at 1m per minute led to the lowest defect rate in a manufacturing process. O

800+ New Crypto Features

 By Quentin Viville, Sudarshan Sawal, and Ernest Chan PredictNow.ai is excited to announce that we’re expanding our feature zoo to cover crypto features! This follows our work on US stock features, and features based on options activities, ETFs, futures, and macroeconomic indicators. To read more on our previous work, click here . These new crypto features can be used as input to our machine-learning API to help improve your trading strategy. In this blog we have outlined the new crypto features as well as demonstrated  how we have used them for short term alpha generation and crypto portfolio optimization. Our new crypto features are designed to capture market activity  from subtle movements to large overarching trends. These features will quantify the variations of the price, the return, the order flow, the volatility and the correlations that appear among them. To create these features, we first constructed the Base Features  using raw market data that includes microstructure inform