By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012) observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa
Backtesting trading strategies necessarily involves a very limited amount of historical data. For example, I seldom test strategies with data older than 2007. Gathering longer history may not improve predictive accuracy since the market structure may have changed substantially. Given such scant data, it is reasonable to question whether the good backtest results (e.g. a high annualized return R) we may have obtained is just due to luck. Many academic researchers try to address this issue by running their published strategies through standard statistical hypothesis testing. You know the drill: the researchers first come up with a supposedly excellent strategy. In a display of false modesty, they then suggest that perhaps a null hypothesis can produce the same good return R. The null hypothesis may be constructed by running the original strategy through some random simulated historical data, or by randomizing the trade entry dates. The researchers then proceed to show that such random c