By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012) observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa
We all know that 2011 was a bad year for many hedge funds, with the average fund down 5% . But what type of strategies did well, and what did particularly poorly? The numbers are out: Forex funds lose more than average, down 6%. In fact, 71 out of 77 Forex funds tracked by a Citigroup currency analyst were down in 2011. And the winners are? Statarb funds, with a 5% averge return . This superior performance of statarb funds is quite a contrast from the last financial crisis 2007-9. Then, most of the big factor-driven statarb models failed miserably . What caused this difference? Is it because the risk management techniques of big funds have improved? Or maybe that's because in 2011, the deviation from factor returns mean-revert within a few days, so those statarb models that re-balance on a daily basis can benefit from the buying/selling opportunity at steep discount/premium? To settle this question, let me report the 2011 backtest results (without transaction costs) of running Andr