By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012) observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa
Long time readers of this blog know that I haven't found data mining or artificial intelligence techniques to be very useful for my own trading, for they typically overfit to non-recurring past patterns. (Not surprisingly, they are much more useful for driverless cars .) Nevertheless, one must keep an open mind and continues to keep tabs on new developments in this field. To this end, here is a new paper written by an engineering student at UC Berkeley which uses "support vector machine" together with 10 simple technical indicators to predict the SPX index, purportedly with 60% accuracy. If one includes an additional indicator which measures the number of news articles on a stock in the previous day, then the accuracy supposedly goes up to 70%. I did not have the chance to reproduce and verify this result yet, but I invite you to try it out and share your findings here. If you do so, you may find this new data mining product called 11Ants Analytics useful. It is an Exc