By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012) observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa
Pair trading was invented two decades ago, but automating its implementation has only recently become fashionable with independent traders. But once the spotlight is on, innovations come fast and furious. Here are a number of recent developments that I find interesting: 1. I mentioned previously the software called quant2ib . It is an API which allows us to get market data and send orders from a Matlab program to Interactive Brokers (IB). I have used it extensively for our trading, and it is as reliable as IB's native API. Their latest version now includes functions for constructing a "combo" security. This combo security can be pairs of stocks, ETF's, futures, etc. (with the notable exception of currencies), and the API allows you to get market data as well as to submit orders on a combo. This is a huge improvement because you can now automatically trade a pair of securities as one unit by submitting limit orders on the combo. (Previously, you would have had to sub