Langsung ke konten utama

Applying Corrective AI to Daily Seasonal Forex Trading

  By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal     ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012)   observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa

Have you traded 10,000 hours yet?

Author Malcolm Gladwell, in his fascinating bestseller "Outliers: The Story of Success", cites neurological research showing that "10,000 hours of practice is required to achieve the level of mastery associated with being a world-class expert." This seems to apply across many different types of experts, whether they are "writers, ice skaters, concert pianists, chess players ... Even Mozart ... couldn't hit his stride until he had his ten thousand hours in".

Reflecting on my own experience, I have become consistently profitable only after 4 years of actual trading (research alone doesn't count -- real money need to be at risk.) So while the number of hours may not be exactly 10,000, the order of magnitude is about right.

So if your trading has not been profitable, ask yourself this: "Have I traded 10,000 hours yet?"

Komentar

Postingan populer dari blog ini

Applying Corrective AI to Daily Seasonal Forex Trading

  By Sergei Belov, Ernest Chan, Nahid Jetha, and Akshay Nautiyal     ABSTRACT We applied Corrective AI (Chan, 2022) to a trading model that takes advantage of the intraday seasonality of forex returns. Breedon and Ranaldo (2012)   observed that foreign currencies depreciate vs. the US dollar during their local working hours and appreciate during the local working hours of the US dollar. We first backtested the results of Breedon and Ranaldo on recent EURUSD data from September 2021 to January 2023 and then applied Corrective AI to this trading strategy to achieve a significant increase in performance. Breedon and Ranaldo (2012) described a trading strategy that shorted EURUSD during European working hours (3 AM ET to 9 AM ET, where ET denotes the local time in New York, accounting for daylight savings) and bought EURUSD during US working hours (11 AM ET to 3 PM ET). The rationale is that large-scale institutional buying of the US dollar takes place during European working hours to pa

Conditional Portfolio Optimization: Using machine learning to adapt capital allocations to market regimes

By Ernest Chan, Ph.D., Haoyu Fan, Ph.D., Sudarshan Sawal, and Quentin Viville, Ph.D. Previously on this blog, we wrote about a machine-learning-based parameter optimization technique we invented, called Conditional Parameter Optimization (CPO). It appeared to work well on optimizing the operating parameters of trading strategies, but increasingly, we found that its greatest power lies in its potential to optimize portfolio allocations . We call this Conditional Portfolio Optimization (which fortuitously shares the same acronym). Let’s recap what Conditional Parameter Optimization is. Traditionally, optimizing the parameters of any business process (such as a trading strategy) is a matter of finding out what parameters give an optimal outcome over past data. For example, setting a stop loss of 1% gave the best Sharpe ratio for a trading strategy backtested over the last 10 years. Or running the conveyor belt at 1m per minute led to the lowest defect rate in a manufacturing process. O

800+ New Crypto Features

 By Quentin Viville, Sudarshan Sawal, and Ernest Chan PredictNow.ai is excited to announce that we’re expanding our feature zoo to cover crypto features! This follows our work on US stock features, and features based on options activities, ETFs, futures, and macroeconomic indicators. To read more on our previous work, click here . These new crypto features can be used as input to our machine-learning API to help improve your trading strategy. In this blog we have outlined the new crypto features as well as demonstrated  how we have used them for short term alpha generation and crypto portfolio optimization. Our new crypto features are designed to capture market activity  from subtle movements to large overarching trends. These features will quantify the variations of the price, the return, the order flow, the volatility and the correlations that appear among them. To create these features, we first constructed the Base Features  using raw market data that includes microstructure inform